27 May 2010

Does crude oil evaporate?

It seems some kinds do evaporate BUT according to the US Environmental Protection Agency "these classifications are dynamic for spilled oils; weather conditions and water temperature greatly influence the behavior of oil and refined petroleum products in the environment. For example, as volatiles evaporate from a Class B oil, it may become a Class C oil.". Evaporation is not necessarily a good thing.

And a kind of crude that evaporates easily also "penetrate porous surfaces such as dirt and sand, and may be persistent in such a matrix" and "may be highly toxic to humans, fish, and other biota."

Types of Crude Oil
from the US Environmental Protection Agency emphasis mine.

The petroleum industry often characterizes crude oils according to their geographical source, e.g., Alaska North Slope Crude. Oils from different geographical areas have unique properties; they can vary in consistency from a light volatile fluid to a semi-solid. Classification of crude oil types by geographical source is generally not a useful classification scheme for response personnel because they offer little information about general toxicity, physical state, and changes that occur with time and weathering. These characteristics are primary considerations in oil spill response. The classification scheme provided below is more useful in a response scenario.

Class A: Light, Volatile Oils. These oils are highly fluid, often clear, spread rapidly on solid or water surfaces, have a strong odor, a high evaporation rate, and are usually flammable. They penetrate porous surfaces such as dirt and sand, and may be persistent in such a matrix. They do not tend to adhere to surfaces; flushing with water generally removes them. Class A oils may be highly toxic to humans, fish, and other biota. Most refined products and many of the highest quality light crudes can be included in this class.

Class B: Non-Sticky Oils. These oils have a waxy or oily feel. Class B oils are less toxic and adhere more firmly to surfaces than Class A oils, although they can be removed from surfaces by vigorous flushing. As temperatures rise, their tendency to penetrate porous substrates increases and they can be persistent. Evaporation of volatiles may lead to a Class C or D residue. Medium to heavy paraffin-based oils fall into this class.

Class C: Heavy, Sticky Oils. Class C oils are characteristically viscous, sticky or tarry, and brown or black. Flushing with water will not readily remove this material from surfaces, but the oil does not readily penetrate porous surfaces. The density of Class C oils may be near that of water and they often sink. Weathering or evaporation of volatiles may produce solid or tarry Class D oil. Toxicity is low, but wildlife can be smothered or drowned when contaminated. This class includes residual fuel oils and medium to heavy crudes.

Class D: Nonfluid Oils. Class D oils are relatively non-toxic, do not penetrate porous substrates, and are usually black or dark brown in color. When heated, Class D oils may melt and coat surfaces making cleanup very difficult. Residual oils, heavy crude oils, some high paraffin oils, and some weathered oils fall into this class.

These classifications are dynamic for spilled oils; weather conditions and water temperature greatly influence the behavior of oil and refined petroleum products in the environment. For example, as volatiles evaporate from a Class B oil, it may become a Class C oil. If a significant temperature drop occurs (e.g., at night), a Class C oil may solidify and resemble a Class D oil. Upon warming, the Class D oil may revert back to a Class C oil.


See also What will happen to all this oil? (Oil spill off Changi East) from Water Quality in Singapore